If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+50t+2=0
a = 4.9; b = 50; c = +2;
Δ = b2-4ac
Δ = 502-4·4.9·2
Δ = 2460.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-\sqrt{2460.8}}{2*4.9}=\frac{-50-\sqrt{2460.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+\sqrt{2460.8}}{2*4.9}=\frac{-50+\sqrt{2460.8}}{9.8} $
| 0.5x+5=-3 | | 11b=11b | | 7-6(4k-8)=247 | | 4x(2x+3)=-2x-4 | | g-(-1)=12 | | 12x-24+10x+30=180 | | 6+3y-6=5y+20 | | 3/4=z/14 | | 5z+17z=44 | | /34=z/14 | | 4.9t^2=0 | | 11-3x=24 | | -144=-8(8a-6) | | 5g+2(-3+3g)=1g | | 4/7y-3/5y=2 | | 3(8x-2)+2x=11 | | -9c+5=12 | | 6(1-3x)=-120 | | 20y+10=180 | | F(x)=3x^2-2x-6 | | 7(p+3)=2(p-2)-3p | | F(x)=x^-x-2 | | 14m-26-7m+18=-36 | | 25y-25=180 | | 6=9n+n | | 2/3x-1/2x-7=1/6x+7 | | 25y-25+20y+10=180 | | -10n-7=34 | | 6(x-2)=9x-3(2x-1 | | 15(2x-3)=8 | | 5+1.2x=10+0.6x | | 5(x+2)-(3x+10)=14 |